ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 65749  (#11.1)

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

Прислать комментарий     Решение

Задача 65758  (#11.2)

Темы:   [ Сфера, описанная около тетраэдра ]
[ Cерединный перпендикуляр и ГМТ ]
[ Параллелепипеды (прочее) ]
Сложность: 3+
Классы: 10,11

В пространстве даны три отрезка A1A2, B1B2 и C1C2, не лежащие в одной плоскости и пересекающиеся в одной точке P. Обозначим через Oijk центр сферы, проходящей через точки Ai, Bj, Ck и P. Докажите, что прямые O111O222, O112O221, O121O212 и O211O122 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65759  (#11.3)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Автор: Храмцов Д.

На клетчатый лист бумаги размера 100×100 положили несколько попарно неперекрывающихся картонных равнобедренных прямоугольных треугольничков с катетом 1; каждый треугольничек занимает ровно половину одной из клеток. Оказалось, что каждый единичный отрезок сетки (включая граничные) накрыт ровно одним катетом треугольничка. Найдите наибольшее возможное число клеток, не содержащих ни одного треугольничка.

Прислать комментарий     Решение

Задача 65760  (#11.4)

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 10,11

В координатном пространстве провели все плоскости с уравнениями  x ± y ± z = n  (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка  (x0, y0, z0)  с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка  (kx0, ky0, kz0)  лежит строго внутри некоторого октаэдра разбиения.

Прислать комментарий     Решение

Задача 65761  (#11.5)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Пусть n – натуральное число. На  2n + 1  карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении  *x2n + *x2n–1 + ... *x + *  так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .