ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 65813  (#1)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков H1M2, H2M3 и H3M1 можно построить треугольник.

Прислать комментарий     Решение

Задача 65814  (#2)

Темы:   [ Шахматная раскраска ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы?

Прислать комментарий     Решение

Задача 65815  (#3)

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Отрезок единичной длины разбили на 11 отрезков, длина каждого из которых не превосходит а.
При каких значениях а можно утверждать, что из любых трёх получившихся отрезков можно составить треугольник?

Прислать комментарий     Решение

Задача 65816  (#4)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
Сложность: 4-
Классы: 7,8,9

Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)

Прислать комментарий     Решение

Задача 65817  (#5)

Тема:   [ Взвешивания ]
Сложность: 4-
Классы: 7,8,9,10,11

Есть шесть монет, одна из которых фальшивая (она отличается по весу от настоящей, но её вес, как и вес настоящей монеты, неизвестен).
Как за три взвешивания с помощью весов, показывающих общий вес взвешиваемых монет, найти фальшивую монету?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .