ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 65823  (#1)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Палиндром – это натуральное число, которое читается одинаково слева направо и справа налево (например, 1, 343 и 2002 палиндромы).
Найдётся ли 2005 пар вида  (n, n + 110),  где оба числа – палиндромы?

Прислать комментарий     Решение

Задача 65824  (#2)

Темы:   [ Длины сторон (неравенства) ]
[ Неравенства для углов треугольника ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8

Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что  AD = BC.  Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.

Прислать комментарий     Решение

Задача 65825  (#3)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип крайнего (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 7,8,9,10,11

На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.)

Прислать комментарий     Решение

Задача 65826  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 8,9,10,11

По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

Прислать комментарий     Решение

Задача 65827  (#5)

Тема:   [ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9,10

Найдите наибольшее натуральное число N, для которого уравнение  99x + 100y + 101z = N  имеет единственное решение в натуральных числах x, y, z.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .