ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 65873

Темы:   [ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Квадратная коробка конфет разбита на 49 равных квадратных ячеек. В каждой ячейке лежит шоколадная конфета – либо чёрная, либо белая. За один присест Саша может съесть две конфеты, если они одного цвета и лежат в соседних по стороне или по углу ячейках. Какое наибольшее количество конфет гарантированно может съесть Саша, как бы ни лежали конфеты в коробке?

Прислать комментарий     Решение

Задача 65875

Темы:   [ Правильные многоугольники ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10

Автор: Тимохин М.

Дан правильный 2n-угольник A1A1...A2n с центром O, причём  n ≥ 5.  Диагонали A2An–1 и A3An пересекаются в точке F, а A1A3 и A2A2n–2 – в точке P.
Докажите, что  PF = PO.

Прислать комментарий     Решение

Задача 65879

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Птолемея ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

Прислать комментарий     Решение

Задача 65880

Темы:   [ Системы линейных уравнений ]
[ Системы алгебраических нелинейных уравнений ]
[ Системы алгебраических неравенств ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 9,10,11

На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?

Прислать комментарий     Решение

Задача 65881

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 9,10,11

Можно ли квадрат со стороной 1 разрезать на две части и покрыть ими какой-нибудь круг диаметра больше 1?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .