ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



Задача 66103

Темы:   [ Невыпуклые многоугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

а) На каждой стороне десятиугольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной десятиугольника?
б) Решите ту же задачу для одиннадцатиугольника.

Прислать комментарий     Решение

Задача 66104

Темы:   [ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Дан правильный 12-угольник A1A2...A12. Можно ли из 12 векторов    выбрать семь, сумма которых равна нулевому вектору?

Прислать комментарий     Решение

Задача 66106

Темы:   [ Числовые таблицы и их свойства ]
[ Простые числа и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В каждую клетку квадрата 1000×1000 вписано число так, что в любом не выходящем за пределы квадрата прямоугольнике площади s со сторонами, проходящими по границам клеток, сумма чисел одна и та же. При каких s числа во всех клетках обязательно будут одинаковы?

Прислать комментарий     Решение

Задача 66109

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 3+
Классы: 7,8,9

В шахматном турнире было 10 участников. В каждом туре участники разбивались на пары и в каждой паре играли друг с другом одну игру. В итоге каждый участник сыграл с каждым ровно один раз, причём не меньше чем в половине всех игр участники были земляками (из одного города). Докажите, что в каждом туре хоть одна игра была между земляками.

Прислать комментарий     Решение

Задача 66111

Темы:   [ Ограниченность, монотонность ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
  а) Могло ли случиться, что до a5 последовательность убывает  (a1 > a2 > a3 > a4 > a5),  а начиная с a5 – возрастает  (a5 < a6 < a7 < ...)?
  б) А могло ли случиться наоборот: до a5 последовательность возрастает, а начиная с a5 – убывает?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .