ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 [Всего задач: 23]      



Задача 65882

Темы:   [ Теория игр (прочее) ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4
Классы: 9,10,11

Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

Прислать комментарий     Решение

Задача 65876

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4+
Классы: 8,9,10

а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали?
б) Решите ту же задачу, если на каждый вопрос есть 12 вариантов ответа.

Прислать комментарий     Решение

Задача 65883

Темы:   [ Классическая комбинаторика (прочее) ]
[ Процессы и операции ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 5
Классы: 9,10,11

Автор: Петров Ф.

На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .