ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 65860  (#1)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Взяли пять натуральных чисел и для каждых двух записали их сумму. Могло ли оказаться, что все 10 получившихся сумм оканчиваются разными цифрами?

Прислать комментарий     Решение

Задача 65861  (#2)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10

На прямой отмечено четыре точки и ещё одна точка отмечена вне прямой. Всего существует шесть треугольников с вершинами в этих точках. Какое наибольшее количество из них могут быть равнобедренными?

Прислать комментарий     Решение

Задача 65862  (#3)

Темы:   [ Системы точек и отрезков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

На окружности отмечено 100 точек. Эти точки нумеруются числами от 1 до 100 в некотором порядке.
  а) Докажите, что при любой нумерации точки можно разбить на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были нечётными.
  б) Верно ли, что при любой нумерации можно разбить точки на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были чётными?

Прислать комментарий     Решение

Задача 65863  (#4)

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10

Даны параллелограмм ABCD и такая точка K, что  AK = BD.  Точка M – середина CK. Докажите, что  ∠BMD = 90°.

Прислать комментарий     Решение

Задача 65864  (#5)

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наименьшее количество ягод может оставить медвежатам лиса?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .