ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 65870  (#1)

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

Прислать комментарий     Решение

Задача 65871  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 8,9,10,11

В каждой клетке доски 8×8 написали по одному натуральному числу. Оказалось, что при любом разрезании доски на доминошки суммы чисел во всех доминошках будут разные. Может ли оказаться, что наибольшее записанное на доске число не больше 32?

Прислать комментарий     Решение

Задача 65872  (#3)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Произвольный треугольник разрезали на равные треугольники прямыми, параллельными сторонам (как показано на рисунке).
Докажите, что ортоцентры шести закрашенных треугольников лежат на одной окружности.

Прислать комментарий     Решение

Задача 65873  (#4)

Темы:   [ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Квадратная коробка конфет разбита на 49 равных квадратных ячеек. В каждой ячейке лежит шоколадная конфета – либо чёрная, либо белая. За один присест Саша может съесть две конфеты, если они одного цвета и лежат в соседних по стороне или по углу ячейках. Какое наибольшее количество конфет гарантированно может съесть Саша, как бы ни лежали конфеты в коробке?

Прислать комментарий     Решение

Задача 65874  (#5)

Темы:   [ Системы линейных уравнений ]
[ Системы алгебраических нелинейных уравнений ]
[ Системы алгебраических неравенств ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .