ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 15]      



Задача 66007  (#11.4.2)

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Хорды и секущие (прочее) ]
[ Вписанные и описанные окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 9,10,11

В треугольнике АВС проведены медиана АМ, биссектриса AL и высота AH.
Найдите радиус описанной окружности Ω треугольника АВС, если  AL = t,  AH = h  и L – середина отрезка MH.

Прислать комментарий     Решение

Задача 66008  (#11.4.3)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 4-
Классы: 10,11

Назовём натуральное число убывающим, если каждая цифра в его десятичной записи, кроме первой, меньше или равна предыдущей. Существует ли такое натуральное n, что число 16n – убывающее?

Прислать комментарий     Решение

Задача 66009  (#11.5.1)

Темы:   [ Иррациональные уравнения ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

Решите уравнение  f(f(x)) = f(x),  если  

Прислать комментарий     Решение

Задача 66011  (#11.5.2)

Темы:   [ Конус (прочее) ]
[ Теорема Пифагора в пространстве ]
[ Вычисление длин дуг ]
Сложность: 3+
Классы: 10,11

Прямой круговой конус с радиусом основания R и высотой    положили боком на плоскость и покатили так, что его вершина осталась неподвижна. Сколько оборотов сделает его основание до момента, когда конус вернется в исходное положение?

Прислать комментарий     Решение

Задача 66010  (#11.5.3)

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Существует ли такое натуральное n, что  3n + 2·17n  является квадратом некоторого натурального числа?

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .