ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 66094  (#1)

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10,11

Даны две непостоянные прогрессии (an) и (bn), одна из которых арифметическая, а другая – геометрическая. Известно, что  a1 = b1a2 : b2 = 2  и  a4 : b4 = 8.
Чему может быть равно отношение  a3 : b3?

Прислать комментарий     Решение

Задача 66095  (#2)

Темы:   [ Логарифмические уравнения ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Незнайка знаком только с десятичными логарифмами и считает, что логарифм суммы двух чисел равен произведению их логарифмов, а логарифм разности двух чисел равен частному их логарифмов. Может ли Незнайка подобрать хотя бы одну пару чисел, для которой действительно верны одновременно оба этих равенства?

Прислать комментарий     Решение

Задача 66096  (#3)

Темы:   [ Теория алгоритмов (прочее) ]
[ Сочетания и размещения ]
[ Двоичная система счисления ]
[ Троичная система счисления ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Детектив Ниро Вульф расследует преступление. В деле замешаны 80 человек, среди которых один – преступник, еще один – свидетель преступления (но неизвестно, кто это). Каждый день детектив может пригласить к себе одного или нескольких из этих 80 человек, и если среди приглашенных есть свидетель, но нет преступника, то свидетель сообщит, кто преступник. Может ли детектив заведомо раскрыть дело за 12 дней?

Прислать комментарий     Решение

Задача 66097  (#4)

Темы:   [ Перпендикулярные прямые ]
[ Векторы помогают решить задачу ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4
Классы: 9,10,11

Внутри треугольника ABC взята такая точка D, что  BD = CD,  ∠BDC = 120°.  Вне треугольника ABC взята такая точка E, что  AE = CE,  ∠AEC = 60°  и точки B и E находятся в разных полуплоскостях относительно AC. Докажите, что  ∠AFD = 90°,  где F – середина отрезка BE.

Прислать комментарий     Решение

Задача 66098  (#5)

Темы:   [ Десятичная система счисления ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Таблица размером 2017×2017 заполнена ненулевыми цифрами. Среди 4034 чисел, десятичные записи которых совпадают со строками и столбцами этой таблицы, читаемыми слева направо и сверху вниз соответственно, все, кроме одного, делятся на простое число p, а оставшееся число на p не делится.
Найдите все возможные значения p.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .