ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 66308  (#9.3)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Неравенства для углов треугольника ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
[ Средняя линия треугольника ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 9,10

Автор: Mudgal A.

В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что  ∠BKC > 90°.

Прислать комментарий     Решение

Задача 66316  (#10.3)

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Автор: Соколов А.

Дан выпуклый четырёхугольник ABCD. Пусть ωA, ωB, ωC, ωD – описанные окружности треугольников BCD, ACD, ABD, ABC соответственно. Обозначим через XA произведение степени точки A относительно ωA на площадь треугольника BCD. Аналогично определим XB, XC, XD. Докажите, что  XA + XB + XC + XD = 0.

Прислать комментарий     Решение

Задача 66207  (#4)

Темы:   [ Треугольники с углами 60° и 120° ]
[ Признаки и свойства параллелограмма ]
[ Композиции поворотов ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. На стороне AB как на основании построен во внешнюю сторону равнобедренный треугольник ABC' с углом при вершине 120°, а на стороне AC построен во внутреннюю сторону правильный треугольник ACB'. Точка K – середина отрезка BB'. Найдите углы треугольника KCC'.

Прислать комментарий     Решение

Задача 66302  (#8.4)

Темы:   [ Разные задачи на разрезания ]
[ Индукция в геометрии ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

Саша разрезал бумажный треугольник на два треугольника. Затем он каждую минуту резал на два треугольника один из полученных ранее треугольников. Через некоторое время, не меньшее часа, все полученные Сашей треугольники оказались равными. Укажите все исходные треугольники, для которых возможна такая ситуация.

Прислать комментарий     Решение

Задача 66309  (#9.4)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Касающиеся окружности ]
[ Поворотная гомотетия (прочее) ]
[ Инверсия помогает решить задачу ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 9,10

Автор: Mahdi Etesami Fard

Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .