ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 66391

Темы:   [ Математическая логика (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 5,6,7

В комнате стоят 20 стульев двух цветов: синего и красного. На каждый из стульев сел либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Каждый из сидящих заявил, что он сидит на синем стуле. Затем они как-то пересели, после чего половина из сидящих сказали, что сидят на синих стульях, а остальные сказали, что сидят на красных. Сколько рыцарей теперь сидит на красных стульях?
Прислать комментарий     Решение


Задача 66394

Темы:   [ Теория игр (прочее) ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 6,7

В ряд записаны всевозможные правильные несократимые дроби, знаменатели которых не больше ста. Маша и Света ставят знаки "+" или "–' перед любой дробью, перед которой знак еще не стоит. Они делают это по очереди, но известно, что Маше придётся сделать последний ход и вычислить результат действий. Если он получится целым, то Света даст ей шоколадку. Сможет ли Маша получить шоколадку независимо от действий Светы?
Прислать комментарий     Решение


Задача 66395

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

Объем бутылки кваса – 1,5 литра. Первый выпил половину бутылки, второй – треть того, что осталось после первого, третий – четверть оставшегося от предыдущих, и так далее, четырнадцатый – пятнадцатую часть оставшегося. Сколько кваса осталось в бутылке?
Прислать комментарий     Решение


Задача 66396

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

Можно ли внутри выпуклого пятиугольника отметить 18 точек так, чтобы внутри каждого из десяти треугольников, образованных его вершинами, отмеченных точек было поровну?
Прислать комментарий     Решение


Задача 66397

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8

Автор: Пешнин А.

Дан прямоугольный параллелепипед, у которого все измерения (длина, ширина и высота) – целые числа. Известно, что если длину и ширину увеличить на 1, а высоту уменьшить на 2, то объем параллелепипеда не изменится. Докажите, что какое-то из измерений данного параллелепипеда кратно трем.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .