ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 66408  (#1)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Теорема синусов ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Мухин Д.

В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.
Прислать комментарий     Решение


Задача 66409  (#2)

Темы:   [ Трапеции (прочее) ]
[ Подобные треугольники (прочее) ]
[ Гомотетия и поворотная гомотетия (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Mudgal A.

Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°.
Прислать комментарий     Решение


Задача 66410  (#3)

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 3+
Классы: 9,10,11

 Фиксированы окружность, точка A на ней и точка K вне окружности. Секущая, проходящая через K, пересекает окружность в точках P и Q. Докажите, что ортоцентры треугольников APQ лежат на фиксированной окружности.
Прислать комментарий     Решение


Задача 66411  (#4)

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Две касательные, проведенные из одной точки ]
[ Ортогональная (прямоугольная) проекция ]
[ Скалярное произведение ]
Сложность: 3+
Классы: 9,10,11

На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB.
Прислать комментарий     Решение


Задача 66412  (#5)

Темы:   [ Кратчайший путь по поверхности ]
[ Равногранный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .