ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 66419  (#7.2.3)

Темы:   [ Математическая логика (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

В коробке лежат фрукты (не менее пяти). Если вытащить наугад три фрукта, то среди них обязательно найдется яблоко. Если вытащить наугад четыре фрукта, то среди них обязательно найдется груша. Какие фрукты могут быть вытащены и в каком количестве, если взять наугад пять фруктов?
Прислать комментарий     Решение


Задача 66420  (#7.3.1)

Тема:   [ Формулы сокращенного умножения ]
Сложность: 3+
Классы: 7,8

Можно ли представить число в виде суммы квадратов двух натуральных чисел?
Прислать комментарий     Решение


Задача 66421  (#7.3.2)

Темы:   [ Прямоугольные треугольники ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

В остроугольном треугольнике АВС биссектриса AN, высота BH и прямая, перпендикулярная стороне АВ и проходящая через ее середину, пересекаются в одной точке. Найдите угол ВАС.
Прислать комментарий     Решение


Задача 66422  (#7.3.3)

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Существует ли четырёхзначное число, сумма цифр которого в 25 раз меньше их произведения?
Прислать комментарий     Решение


Задача 66424  (#7.4.2)

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

На сторонах AB и BC равностороннего треугольника ABC отмечены точки D и K соответственно, а на стороне AC отмечены точки E и M так, что DA + AE = KC + CM = AB. Отрезки DM и KE пересекаются. Найдите угол между ними.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .