ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 87083

Темы:   [ Сфера, описанная около тетраэдра ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 8,9

Основание пирамиды ABCD – треугольник ABC со сторонами AC = 6 , BC = 8 , AB = 10 . Все боковые рёбра равны 5 . Найдите а) радиус сферы, описанной около пирамиды ABCD ; б) расстояние между прямыми DM и AC и расстояние прямыми DM и BC , где DM – высота пирамиды ABCD .
Прислать комментарий     Решение


Задача 87084

Темы:   [ Сфера, описанная около тетраэдра ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 8,9

Основание пирамиды ABCD – треугольник ABC со сторонами AC = 10 , BC = 24 , AB = 26 . Все боковые рёбра наклонены к плоскости основания под углом 45o . Найдите а) радиус сферы, описанной около пирамиды ABCD ; б) расстояние между прямыми DM и AC и прямыми DM и BC , где DM – высота пирамиды ABCD .
Прислать комментарий     Решение


Задача 87450

Темы:   [ Сфера, описанная около тетраэдра ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

Основание пирамиды – правильный треугольник со стороной 6. Одно из боковых рёбер перпендикулярно плоскости основания и равно 4. Найдите радиус шара, описанного около пирамиды.
Прислать комментарий     Решение


Задача 87451

Темы:   [ Сфера, описанная около тетраэдра ]
[ Куб ]
Сложность: 3
Классы: 10,11

Дан куб ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 . Точка M – середина ребра AB , K – середина ребра CD . Найдите радиус сферы, проходящей через точки M , K , A1 , C1 , если ребро куба равно .
Прислать комментарий     Решение


Задача 65758

Темы:   [ Сфера, описанная около тетраэдра ]
[ Cерединный перпендикуляр и ГМТ ]
[ Параллелепипеды (прочее) ]
Сложность: 3+
Классы: 10,11

В пространстве даны три отрезка A1A2, B1B2 и C1C2, не лежащие в одной плоскости и пересекающиеся в одной точке P. Обозначим через Oijk центр сферы, проходящей через точки Ai, Bj, Ck и P. Докажите, что прямые O111O222, O112O221, O121O212 и O211O122 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .