ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 21]      



Задача 110293

Темы:   [ Сфера, вписанная в трехгранный угол ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Дан трёхгранный угол OABC с вершиной O , в котором BOC = α , COA = β , AOB = γ . Пусть вписанная в него сфера касается грани BOC в точке K . Найдите угол BOK .
Прислать комментарий     Решение


Задача 77951

Темы:   [ Сфера, вписанная в трехгранный угол ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 11

В трёхгранный угол с вершиной S вписана сфера с центром в точке O.
Докажите, что плоскость, проходящая через три точки касания, перпендикулярна к прямой SO.

Прислать комментарий     Решение

Задача 111388

Темы:   [ Сфера, вписанная в трехгранный угол ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

Ребро правильного тетраэдра равно a . Плоскость P проходит через вершину B и середины рёбер AC и AD . Шар касается прямых AB , AC , AD и той части плоскости P , которая заключена внутри тетраэдра. Найдите радиус шара. (Найдите все решения).
Прислать комментарий     Решение


Задача 111390

Темы:   [ Сфера, вписанная в трехгранный угол ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

Ребро правильного тетраэдра равно a . Отрезок EF соединяет центр грани ADC с серединой ребра BC . Найдите радиус шара, вписанного в трёхгранный угол при вершине A и касающегося отрезка EF (найдите все решения).
Прислать комментарий     Решение


Задача 110290

Темы:   [ Куб ]
[ Сфера, вписанная в трехгранный угол ]
Сложность: 3
Классы: 10,11

Внутри единичного куба расположены восемь равных шаров. Каждый шар вписан в один из трёхгранных углов куба и касается трёх шаров, соответствующих соседним вершинам куба. Найдите радиусы шаров.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .