ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 492]      



Задача 77898

Темы:   [ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 5+
Классы: 10,11

Докажите, что числа вида 2n при различных целых положительных n могут начинаться на любую наперёд заданную комбинацию цифр.
Прислать комментарий     Решение


Задача 73590

Темы:   [ Десятичная система счисления ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 6+
Классы: 8,9,10,11

Все натуральные числа, в десятичной записи которых не больше n цифр, разбили на два множества следующим образом. В первое множество входят числа с нечётной суммой цифр, а во второе — c чётной суммой цифр. Докажите, что для любого натурального числа k £ n сумма k-х степеней всех чисел первого множества равна сумме k-х степеней всех чисел второго множества.
Прислать комментарий     Решение


Задача 60336

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 6,7,8

Cколько существует различных семизначных телефонных номеров (cчитается, что номер начинаться с нуля не может)?

Прислать комментарий     Решение

Задача 60349

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 6,7,8

Назовем натуральное число "симпатичным", если в его записи встречаются только нечетные цифры. Сколько существует четырехзначных "симпатичных" чисел?

Прислать комментарий     Решение

Задача 64557

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 8,9

Найдите сумму цифр в десятичной записи числа 412·521.

Прислать комментарий     Решение

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .