ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 115354

Темы:   [ Неравенства с объемами ]
[ Объем тетраэдра и пирамиды ]
[ Объем тела равен сумме объемов его частей ]
[ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 10,11

В основании четырёхугольной пирамиды SABCD лежит параллелограмм ABCD . Докажите, что для любой точки O внутри пирамиды сумма объёмов тетраэдров OSAB и OSCD равна сумме объёмов тетраэдров OSBC и OSDA .
Прислать комментарий     Решение


Задача 108836

Темы:   [ Отношение объемов ]
[ Свойства сечений ]
[ Объем тела равен сумме объемов его частей ]
[ Объем призмы ]
[ Расстояние между скрещивающимися прямыми ]
[ Cкрещивающиеся прямые, угол между ними ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4+
Классы: 10,11

Две плоскости, параллельные противоположным рёбрам AB и CD тетраэдра ABCD , делят ребро BC на три равные части. Какая часть объёма тетраэдра заключена между этими плоскостями?
Прислать комментарий     Решение


Задача 110502

Темы:   [ Правильная пирамида ]
[ Сфера, описанная около пирамиды ]
[ Отношение объемов ]
[ Объем тела равен сумме объемов его частей ]
Сложность: 4
Классы: 10,11

Сторона основания ABCD правильной пирамиды SABCD равна 2. Плоскость α , параллельная прямым SC и AD , пересекает пирамиду так, что в сечение можно вписать окружность, причём периметр сечения равен . Найдите: 1) в каком отношении плоскость α делит рёбра пирамиды; 2) отношение объёмов частей, на которые плоскость α разбивает пирамиду; 3) расстояние от центра описанной около пирамиды сферы до плоскости α .
Прислать комментарий     Решение


Задача 110503

Темы:   [ Правильная пирамида ]
[ Сфера, описанная около пирамиды ]
[ Отношение объемов ]
[ Объем тела равен сумме объемов его частей ]
Сложность: 4
Классы: 10,11

Сторона основания ABCD правильной пирамиды SABCD равна 2. Плоскость α , параллельная прямым SB и AD , пересекает пирамиду так, что в сечение можно вписать окружность, причём периметр сечения равен . Найдите: 1) в каком отношении плоскость α делит рёбра пирамиды; 2) отношение объёмов частей, на которые плоскость α разбивает пирамиду; 3) расстояние от центра описанной около пирамиды сферы до плоскости α .
Прислать комментарий     Решение


Задача 110504

Темы:   [ Правильная пирамида ]
[ Сфера, описанная около пирамиды ]
[ Отношение объемов ]
[ Объем тела равен сумме объемов его частей ]
Сложность: 4
Классы: 10,11

Сторона основания ABCD правильной пирамиды SABCD равна 2. Плоскость α , параллельная прямым SB и AD , пересекает пирамиду так, что в сечение можно вписать окружность, радиуса . Найдите: 1) в каком отношении плоскость α делит рёбра пирамиды; 2) отношение объёмов частей, на которые плоскость α разбивает пирамиду; 3) расстояние от центра описанной около пирамиды сферы до плоскости α .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .