ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 61]      



Задача 30719

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9

Сколькими способами натуральное число n можно представить в виде суммы
  а) k натуральных слагаемых?
  б) k неотрицательных целых слагаемых?
(Представления, отличающиеся порядком слагаемых, считаются различными.)

Прислать комментарий     Решение

Задача 30727

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

Сколькими способами можно расположить в девяти лузах семь белых и два чёрных шара? Часть луз может быть пустой, а лузы считаются различными.

Прислать комментарий     Решение

Задача 60406

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 9,10

Сколько решений имеет уравнение  x1 + x2 + x3 = 1000
  а) в натуральных;   б) в целых неотрицательных числах?

Прислать комментарий     Решение

Задача 61511

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что каждое натуральное число n может быть  2n–1 – 1  различными способами представлено в виде суммы меньших натуральных слагаемых, если два представления, отличающихся хотя бы порядком слагаемых, считать различными.

Прислать комментарий     Решение

Задача 61526

Темы:   [ Раскладки и разбиения ]
[ Многочлены Гаусса ]
[ Производящие функции ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 10,11

  Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525:   fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl).

  а) Докажите равенства:  fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x).

  б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .