ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 98427

Темы:   [ Периодичность и непериодичность ]
[ Линейные рекуррентные соотношения ]
Сложность: 3
Классы: 7,8,9

В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.

Прислать комментарий     Решение

Задача 65562

Тема:   [ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

Функции  f и g определены на всей числовой прямой и взаимно обратны. Известно, что  f представляется в виде суммы линейной и периодической функций:  f(x) = kx + h(x),  где k – число, h – периодическая функция. Доказать, что g также представляется в таком виде.

Прислать комментарий     Решение

Задача 65921

Темы:   [ Периодичность и непериодичность ]
[ Композиции симметрий ]
Сложность: 3+
Классы: 10,11

Функция  f(x) определена для всех действительных чисел, причем для любого x выполняются равенства  f(x + 2) = f(2 – x)  и  f(x + 7) = f(7 – x).
Докажите, что  f(x) – периодическая функция.

Прислать комментарий     Решение

Задача 79400

Тема:   [ Периодичность и непериодичность ]
Сложность: 3+
Классы: 11

Рассматривается функция y = f (x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа k ≠ 0 соотношению f (x + k) . (1 − f (x)) = 1 + f (x). Доказать, что f (x) — периодическая функция.
Прислать комментарий     Решение


Задача 35771

Темы:   [ Периодичность и непериодичность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Существует ли непрерывная функция, принимающая каждое действительное значение ровно 3 раза?
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .