ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 76440

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10

Решить систему:
   x + y + z = a,
   x
² + y² + z² = a²,
   x³ + y³ + z³ = a³.

Прислать комментарий     Решение

Задача 102828

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Замена переменных ]
Сложность: 3
Классы: 7,8

Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

Прислать комментарий     Решение

Задача 60924

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Симметрические многочлены ]
Сложность: 3+
Классы: 8,9,10

Пусть x1, x2 – корни уравнения  x² + px + q = 0.  Выразите через p и q следующие выражения:
а)     б)     в)     г)  

Прислать комментарий     Решение

Задача 60926

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Симметрические многочлены ]
Сложность: 3+
Классы: 8,9,10

Уравнение  x² + px + q = 0  имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные:

а)       б)       в)       г)  

Прислать комментарий     Решение

Задача 61031

Темы:   [ Тождественные преобразования ]
[ Симметрические многочлены ]
[ Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Известно, что  a + b + c = 0,  a2 + b2 + c2 = 1.  Найдите  a4 + b4 + c4.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .