ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 35667

Темы:   [ Правило произведения ]
[ Криптография ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 8,9

Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n
(n чётно). Некоторые из клеток вырезаются. Одна из сторон трафарета помечена. При наложении этого трафарета на чистый лист бумаги четырьмя возможными способами (помеченной стороной вверх, вправо, вниз, влево) его вырезы полностью покрывают всю площадь квадрата, причём каждая клетка оказывается под вырезом ровно один раз. Буквы сообщения, имеющего длину n², последовательно вписываются в вырезы трафарета, сначала наложенного на чистый лист бумаги помеченной стороной вверх. После заполнения всех вырезов трафарета буквами сообщения трафарет располагается в следующем положении и т. д. После снятия трафарета на листе бумаги оказывается зашифрованное сообщение.
Найдите число различных ключей для произвольного чётного числа n.

Прислать комментарий     Решение

Задача 88133

Темы:   [ Лингвистика ]
[ Криптография ]
Сложность: 2+
Классы: 5,6,7,8

Попробуйте расшифровать отрывок из книги "Алиса в Зазеркалье": " — БЕРПИ Э ЙДЕМГОКВЭЫ БИБЕО-ЖАКЙПЧ ЗВЕЛЕ,  — ЗБИСИВ ФИВМИУ-КЕВМИУ ПЕЛЕВЧЖЕ ДГОСГАМОВЧЖЕ,  — ЕЖЕ ЕСЖИЬИОМ МЕВЧБЕ МЕ, ЬМЕ Э ЦЕЬЙ, ЬМЕКЮ ЕЖЕ ЕСЖИЬИВЕ,  — ЖА КЕВЧФО, ЖА ТОЖЧФО". Текст зашифрован так: десять букв ("а", "е", "и", "й", "о", "у", "ы", "э", "ю", "я") разбиты на пары, и каждая из этих букв в тексте заменена второй из пары. Все остальные буквы точно так же разбиты на пары.
Прислать комментарий     Решение


Задача 35683

Темы:   [ Перебор случаев ]
[ Криптография ]
Сложность: 3
Классы: 7,8,9

Буквы русского алфавита занумерованы в соответствии с таблицей: $ \begin{array}{cccccccccccccccccccccc} А & Б & В & Г & Д & Е & Ж & З & И & К & ... & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & ... & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \end{array} $ Для зашифрования сообщения, состоящего из n букв, выбирается ключ K - некоторая последовательность из n букв приведенного выше алфавита. Зашифрование каждой буквы сообщения состоит в сложении ее номера в таблице с номером соответствующей буквы ключевой последовательности и замене полученной суммы на букву алфавита, номер которой имеет тот же остаток от деления на 30, что и эта сумма. Прочтите шифрованное сообщение: РБЬНПТСИТСРРЕЗОХ, если известно, что шифрующая последовательность не содержала никаких букв, кроме А, Б и В. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 35638

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3
Классы: 8,9

Текст М И М О П Р А С Т Е Т И Р А С И С П Д А И С А Ф Е И И Б О Е Т К Ж Р Г Л Е О Л О И Ш И С А Н Н С Й С А О О Л Т Л Е Я Т У И Ц В Ы И П И Я Д П И Щ П Ь П С Е Ю Я Я получен из исходного сообщения перестановкой его букв. Текст У Щ Ф М Ш П Д Р Е Ц Ч Е Ш Ю Ш Ч Д А К Е Ч М Д В К Ш Б Е Е Ч Д Ф Э П Й Щ Г Ш Ф Щ Ц Е Ю Щ Ф П М Е Ч П М Е Р Щ М Е О Ф Ч Щ Х Е Ш Р Т Г Д И Ф Р С Я Ы Л К Д Ф Ф Е Е получен из того же исходного сообщения заменой каждой буквы на другую букву так, что разные буквы заменены разными, а одинаковые - одинаковыми. Восстановите исходное сообщение. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 35668

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3
Классы: 7,8,9

Дана криптограмма: $ \begin{array}{ccccc} ФН & \times & Ы & = & ФАФ \\ + & & \times & & - \\ ЕЕ & + & Е & = & НЗ \\ = & & = & & = \\ ИША & + & МР & = & ИМН \end{array} $ Восстановите цифровые значения букв, при которых справедливы все указанные равенства, если разным буквам соответствуют различные цифры. Расставьте буквы в порядке возрастания их цифровых значений и получите искомый текст. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .