ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 73]      



Задача 61085

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 3-
Классы: 9,10,11

Постройте график функции  y(x) = |x + |  с учётом возможных мнимых значений подкоренного выражения (x — произвольное действительное).

Прислать комментарий     Решение

Задача 64320

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Системы линейных уравнений ]
Сложность: 3-
Классы: 7,8

Графики функций  у = kx + b  и  у = bx + k  пересекаются. Найдите абсциссу точки пересечения.

Прислать комментарий     Решение

Задача 65911

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 10,11

На листе бумаги построили параболу – график функции  y = ax² + bx + c  при  a > 0,  b > 0  и  c < 0,  – а оси координат стёрли (см. рис.).
Как они могли располагаться?

Прислать комментарий     Решение

Задача 111911

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

После урока на доске остался график функции  y = k/x  и пять прямых, параллельных прямой  y = kx  (k ≠ 0).
Найдите произведение абсцисс всех десяти точек пересечения.

Прислать комментарий     Решение

Задача 116232

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 10,11

Кривая на плоскости в некоторой системе координат (декартовой) служит графиком функции y = sin x. Может ли та же кривая являться графиком функции y = sin 2x в другой системе координат: если да, то каковы её начало координат и единицы длины на осях (относительно исходных координат и единиц длины)?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 73]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .