ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 102]      



Задача 110058

Темы:   [ Периодичность и непериодичность ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 10,11

Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.
Прислать комментарий     Решение


Задача 107794

Тема:   [ Периодичность и непериодичность ]
Сложность: 5-
Классы: 8,9,10,11

Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)?

Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.

Прислать комментарий     Решение

Задача 97976

Темы:   [ Периодичность и непериодичность ]
[ Предел последовательности, сходимость ]
Сложность: 5-
Классы: 9,10,11

Рассматривается последовательность слов, состоящих из букв "A" и "B". Первое слово в последовательности – "A", k-е слово получается из (k–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...
  а) На каком месте в этой последовательности встретится 1000-я буква "A"?
  б) Докажите, что эта последовательность – непериодическая.

Прислать комментарий     Решение

Задача 60911

 [Последовательность Морса]
Темы:   [ Периодичность и непериодичность ]
[ Итерации ]
[ Двоичная система счисления ]
Сложность: 5
Классы: 8,9,10,11

Последовательность Морса. Бесконечная последовательность из нулей и единиц

0110 1001 1001 0110 1001...

построена по следующему правилу. Сначала написан нуль. Затем делается бесконечное количество шагов. На каждом шаге к уже написанному куску последовательности приписывается новый кусок той же длины, получаемый из него заменой всех нулей единицами, а единиц — нулями.
а) Какая цифра стоит на 2001 месте?
б) Будет ли эта последовательность, начиная с некоторого места, периодической?
в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10.
г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд.
д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности?

Прислать комментарий     Решение

Задача 30388

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2
Классы: 7,8

Найдите остаток от деления 2100 на 3.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .