ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 97985

Темы:   [ Перестройки ]
[ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 8,9,10

Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
   а)  P(n) ≥ n – 3;
   б)  P(n) ≤ 2n – 7;
   в)  P(n) ≤ 2n – 10  при  n ≥ 13.

 
Прислать комментарий     Решение

Задача 73786

Темы:   [ Перестройки ]
[ Полуинварианты ]
[ Индукция в геометрии ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4+
Классы: 7,8,9

Автор: Шлейфер Р.

Дано n фишек нескольких цветов, причём фишек каждого цвета не более n/2. Докажите, что их можно расставить на окружности так, чтобы никакие две фишки одинакового цвета не стояли рядом.
Прислать комментарий     Решение


Задача 88083

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Перестройки ]
Сложность: 2-
Классы: 5,6,7

В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре?
Прислать комментарий     Решение


Задача 88170

Темы:   [ Куб ]
[ Перестройки ]
Сложность: 2
Классы: 5,6,7,8

Переложите пирамиду из 10 кубиков (см. рисунок) так, чтобы её форма осталась прежней, но каждый кубик соприкасался только с новыми кубиками.

Прислать комментарий     Решение

Задача 66312

Темы:   [ Системы точек и отрезков (прочее) ]
[ Перестройки ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 9,10

На каждой из двух параллельных прямых a и b отметили по 50 точек.
Каково наибольшее возможное количество остроугольных треугольников с вершинами в этих точках?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .