ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 202]      



Задача 98040

Темы:   [ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10

В прямоугольной таблице m строк и n столбцов  (m < n).  В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.

Прислать комментарий     Решение

Задача 98107

Темы:   [ Числовые таблицы и их свойства ]
[ Простые числа и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

Можно ли в таблицу 4×4 расставить такие натуральные числа, что одновременно выполняются следующие условия:
  1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
  2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
  3) среди чисел нет равных;
  4) все числа не больше 100?

 
Прислать комментарий     Решение

Задача 98139

Темы:   [ Числовые таблицы и их свойства ]
[ Полуинварианты ]
[ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Автор: Иванов С.

Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число     В таблице зачеркнули n чисел таким образом, что никакие два зачёркнутых числа не находятся в одном столбце или в одной строке. Докажите, что сумма зачёркнутых чисел не меньше 1.

Прислать комментарий     Решение

Задача 98528

Темы:   [ Числовые таблицы и их свойства ]
[ Раскладки и разбиения ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
Сложность: 4
Классы: 10,11

Даны две таблицы A и B, в каждой m строк и n столбцов. В каждой клетке каждой таблицы записано одно из чисел 0 или 1, причём в строках таблиц числа не убывают (при движении по строке слева направо), и в столбцах таблиц числа не убывают (при движении по столбцу сверху вниз). Известно, что при любом k от 1 до m сумма чисел в верхних k строках таблицы A не меньше суммы чисел в верхних k строках таблицы B. Известно также, что всего в таблице A столько же единиц, сколько в таблице B. Докажите, что при любом l от 1 до n сумма чисел в левых l столбцах таблицы A не больше суммы чисел в левых l столбцах таблицы B.

Прислать комментарий     Решение

Задача 98625

Темы:   [ Числовые таблицы и их свойства ]
[ Правило произведения ]
[ Инварианты ]
[ Линейная и полилинейная алгебра ]
Сложность: 4
Классы: 10,11

В каждой клетке таблицы размером 4×4 стоит знак "+" или "-". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .