ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 407]      



Задача 64817

Темы:   [ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Существует ли число, которое делится ровно на 50 чисел из набора 1, 2, ..., 100?

Прислать комментарий     Решение

Задача 65433

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Можно ли расставить натуральные числа от 1 до 10 в ряд так, чтобы каждое число было делителем суммы всех предыдущих?

Прислать комментарий     Решение

Задача 65485

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 10,11

У натурального числа n есть такие два различных делителя а и b, что  (а – 1)(b + 2) = n – 2.
Докажите, что число 2n является квадратом натурального числа.

Прислать комментарий     Решение

Задача 73727

Темы:   [ Делимость чисел. Общие свойства ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

Даны числа 1, 2, 3, ..., 1000. Найдите наибольшее число m, обладающее таким свойством: какие бы m из данных чисел ни вычеркнуть, среди оставшихся  1000 – m  чисел найдутся два, из которых одно делится на другое.

Прислать комментарий     Решение

Задача 76547

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто одно число.
Доказать, что среди выбранных чисел найдутся два, из которых одно делится на другое.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 407]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .