ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



Задача 35143

Темы:   [ Целочисленные и целозначные многочлены ]
[ Простые числа и их свойства ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Безу. Разложение на множители ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10,11

Докажите, что не существует многочлена (степени больше нуля) с целыми коэффициентами, принимающего при каждом натуральном значении аргумента значение, равное некоторому простому числу.

Прислать комментарий     Решение

Задача 109881

Темы:   [ Свойства коэффициентов многочлена ]
[ Производная и кратные корни ]
[ Многочлен n-й степени имеет не более n корней ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

Прислать комментарий     Решение

Задача 110774

Темы:   [ Итерации ]
[ Целочисленные и целозначные многочлены ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4+
Классы: 10,11

Пусть P(x) – многочлен степени  n > 1  с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен
Qk(x) = P(P(...P(P(x))...))  (P применён k раз). Докажите, что существует не более n целых чисел t, при которых  Qk(t) = t.

Прислать комментарий     Решение

Задача 98330

Темы:   [ Итерации ]
[ Квадратные уравнения и системы уравнений ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Безу. Разложение на множители ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Докажите, что не существует никакой (даже разрывной) функции  y = f(x),  для которой  f(f(x)) = x² – 1996  при всех x.

Прислать комментарий     Решение

Задача 109621

Темы:   [ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого действительны и также принадлежат M?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .