ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 34893

Темы:   [ Метод координат в пространстве (прочее) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Докажите, что пересечение трёх прямых круговых цилиндров с радиусами 1, оси которых попарно взаимно перпендикулярны (но не обязательно пересекаются), содержится в некотором шаре радиуса  .
Прислать комментарий     Решение


Задача 35785

Темы:   [ Признаки и свойства параллелограмма ]
[ Метод координат в пространстве (прочее) ]
Сложность: 2+
Классы: 10,11

В пространстве даны параллелограмм ABCD и плоскость M. Расстояния от точек A, B и C до плоскости M равны соответственно a, b и c. Найти расстояние d от вершины D до плоскости M.

Прислать комментарий     Решение

Задача 98323

Темы:   [ Куб ]
[ Метод координат в пространстве (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 10,11

Найдите геометрическое место точек, лежащих внутри куба и равноудаленных от трёх скрещивающихся рёбер  a, b, c  этого куба.

Прислать комментарий     Решение

Задача 109869

Темы:   [ Упаковки ]
[ Метод координат в пространстве (прочее) ]
[ Куб ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

N3 единичных кубиков просверлены по диагонали и плотно нанизаны на нить, после чего нить связана в кольцо (то есть вершина первого кубика соединена с вершиной последнего). При каких N такое ожерелье из кубиков можно упаковать в кубическую коробку с ребром длины N?

Прислать комментарий     Решение

Задача 78630

Темы:   [ Покрытия ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Метод координат в пространстве (прочее) ]
Сложность: 5-
Классы: 10,11

В восьми данных точках пространства установлено по прожектору, каждый из которых может осветить в пространстве октант (трёхгранный угол со взаимно-перпендикулярными сторонами). Доказать, что можно повернуть прожекторы так, чтобы они осветили все пространство.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .