ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 2325]      



Задача 88046

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 5,6,7

На затонувшей каравелле XIV века были найдены шесть мешков с золотыми монетами. В первых четырёх мешках оказалось по 60, 30, 20 и 15 золотых монет. Когда подсчитали монеты в оставшихся двух, кто-то заметил, что число монет в мешках составляет некую последовательность. Приняв это к сведению, смогли бы вы сказать, сколько монет в пятом и шестом мешках?

Прислать комментарий     Решение

Задача 88058

Темы:   [ Уравнения в целых числах ]
[ Задачи-шутки ]
Сложность: 2
Классы: 5,6,7

В комнате стоят трёхногие табуретки и четвероногие стулья. Когда на все эти сидячие места уселись люди, в комнате оказалось 39 ног.
Сколько в комнате табуреток?

Прислать комментарий     Решение

Задача 88071

Темы:   [ Деление с остатком ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6,7

Найдите все натуральные числа, при делении которых на 7 в частном получится то же число, что и в остатке.

Прислать комментарий     Решение

Задача 88077

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Два класса с одинаковым количеством учеников написали контрольную. Проверив контрольные, строгий директор Фёдор Калистратович сказал, что он поставил двоек на 13 больше, чем остальных оценок. Не ошибся ли строгий Фёдор Калистратович?

Прислать комментарий     Решение

Задача 88088

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 6,7,8

Пусть M – произвольное 1992-значное число, кратное 9. Сумму цифр этого числа обозначим через A. Сумму цифр числа A обозначим через B. Сумму цифр числа B обозначим через C. Чему равно число C?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 2325]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .