ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 605]      



Задача 103986

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3
Классы: 6,7,8

На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?

Прислать комментарий     Решение

Задача 108751

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9

На столе стоят 13 перевёрнутых стаканов. Разрешается одновременно переворачивать любые два стакана.
Можно ли добиться того, чтобы все стаканы стояли правильно?

Прислать комментарий     Решение

Задача 115453

Темы:   [ Четность и нечетность ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9,10

Существуют ли нечётные целые числа х, у и z, удовлетворяющие равенству  (x + y)² + (x + z)² = (y + z)²?

Прислать комментарий     Решение

Задача 116376

Темы:   [ Четность и нечетность ]
[ Принцип крайнего ]
Сложность: 3
Классы: 8,9,10

Гости за круглым столом ели изюм из корзины с 2011 изюминками. Оказалось, что каждый съел либо вдвое больше, либо на 6 меньше изюминок, чем его сосед справа. Докажите, что были съедены не все изюминки.

Прислать комментарий     Решение

Задача 116557

Темы:   [ Четность и нечетность ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10

Даны различные натуральные числа  a1, a2, ..., a14.  На доску выписаны все 196 чисел вида  ak + al,  где  1 ≤ k, l ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 605]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .