ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 103898

Тема:   [ Признаки делимости (прочее) ]
Сложность: 2
Классы: 7,8

Ваня задумал простое трёхзначное число, все цифры которого различны. На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух?

Прислать комментарий     Решение

Задача 32986

Темы:   [ Признаки делимости (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 7,8,9

Найдите самое маленькое k, при котором k! делится на 2040.

Прислать комментарий     Решение

Задача 35099

Тема:   [ Признаки делимости (прочее) ]
Сложность: 2+
Классы: 7,8

Придумайте признаки делимости натуральных чисел на   а) 2;   б) 5;   в) 3;   г) 4;   д) 25.

Прислать комментарий     Решение

Задача 30837

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3-
Классы: 7,8

Сформулируйте и докажите признак делимости на
  а) степень основания системы счисления (аналогичный признакам делимости на 100, 1000, ...).
  б) делитель основания системы счисления (аналогичный признакам делимости на 2 и на 5).

Прислать комментарий     Решение

Задача 78550

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3
Классы: 8,9

Докажите следующий признак делимости на 37. Для того, чтобы узнать, делится ли число на 37, надо разбить его на грани справа налево по три цифры в каждой грани. Если сумма полученных трёхзначных чисел делится на 37, то и данное число делится на 37. (Слово "трёхзначные" употреблено условно: некоторые из граней могут начинаться с нулей и быть на самом деле двузначными или меньше; не трёхзначной будет и самая левая грань, если количество цифр нашего числа не делится на 3.)

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .