ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 113]      



Задача 116445

Темы:   [ Исследование квадратного трехчлена ]
[ Соображения непрерывности ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Верно ли, что если  b > a + c > 0,  то квадратное уравнение   ax2 + bx + c = 0   имеет два корня?

Прислать комментарий     Решение

Задача 115968

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Известно, что разность кубов корней квадратного уравнения  ax2 + bx + c = 0  равна 2011.
Сколько корней имеет уравнение  ax2 + 2bx + 4c = 0?

Прислать комментарий     Решение

Задача 116482

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 2+
Классы: 7,8,9

На рисунке изображен график приведенного квадратного трехчлена (ось ординат стерлась, расстояние между соседними отмеченными точками равно 1). Чему равен дискриминант этого трехчлена?

Прислать комментарий     Решение

Задача 60941

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3-
Классы: 8,9,10,11

Укажите все точки плоскости  (x, y),  через которые проходит хотя бы одна кривая семейства  y = p2 + (2p – 1)x + 2x2.

Прислать комментарий     Решение

Задача 35665

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3-
Классы: 8,9,10

Рассматриваются квадратичные функции  y = x2 + px + q,  для которых  p + q = 2002.
Покажите, что параболы, являющиеся графиками этих функций, пересекаются в одной точке.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .