ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 61058

Темы:   [ Квадратный трехчлен (прочее) ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 8,9,10

На плоскости расположено 100 точек. Известно, что через каждые четыре из них проходит график некоторого квадратного трёхчлена. Докажите, что все 100 точек лежат на графике одного квадратного трёхчлена.

Прислать комментарий     Решение

Задача 64491

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 9,10,11

На координатной плоскости изображен график функции  y = ax² + bx + c  (см. рисунок).
На этой же координатной плоскости схематически изобразите график функции  y = cx² + 2bx + a.

Прислать комментарий     Решение

Задача 111778

Темы:   [ Квадратный трехчлен (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Петя придумал 1004 приведённых квадратных трёхчлена  f1, ...,  f1004,  среди корней которых встречаются все целые числа от 0 до 2007. Вася рассматривает всевозможные уравнения  fi = fj  (i ≠ j),  и за каждый найденный у них корень Петя платит Васе по рублю. Каков наименьший возможный доход Васи?

Прислать комментарий     Решение

Задача 35377

Темы:   [ Квадратный трехчлен (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 4-
Классы: 9,10,11

Существуют ли такие 100 квадратных трёхчленов, что каждый из них имеет два корня, а сумма любых двух из них корней не имеет?

Прислать комментарий     Решение

Задача 60935

Темы:   [ Квадратный трехчлен (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 9,10,11

Рассмотрим графики функций  y = x² + px + q,  которые пересекают оси координат в трёх различных точках.
Докажите, что все окружности, описанные около треугольников с вершинами в этих точках, имеют общую точку.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .