ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]      



Задача 88063

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

В трёх ящиках лежат орехи. В первом ящике на 6 кг орехов меньше, чем в двух других вместе. А во втором – на 10 кг меньше, чем в двух других вместе. Сколько орехов в третьем ящике?

Прислать комментарий     Решение

Задача 88256

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7,8

В одной американской фирме каждый служащий является либо демократом, либо республиканцем. После того как один из республиканцев решил стать демократом, тех и других в фирме стало поровну. Затем ещё три республиканца решили стать демократами, и тогда демократов стало вдвое больше, чем республиканцев. Сколько служащих в этой фирме?

Прислать комментарий     Решение

Задача 104051

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 7,8

Купец продаёт двух коней с сёдлами, причем цена одного седла 120 рублей, а другого – 25 рублей. Первый конь с хорошим седлом втрое дороже другого с дешёвым, а другой конь с хорошим седлом вдвое дешевле первого коня с дешёвым. Какова цена каждого коня?

Прислать комментарий     Решение

Задача 35306

Тема:   [ Системы линейных уравнений ]
Сложность: 2+
Классы: 8,9,10

Решите систему уравнений
    5732x + 2134y + 2134z = 7866,
    2134x + 5732y + 2134z = 670,
    2134x + 2134y + 5732z=11464.

Прислать комментарий     Решение

Задача 35307

Тема:   [ Системы линейных уравнений ]
Сложность: 2+
Классы: 7,8,9

Решите систему уравнений
    x + y + u = 4,
    y + u + v = –5,
    u + v + x = 0,
    v + x + y = –8.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .