ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 97]      



Задача 64382

Тема:   [ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 6,7

Артём коллекционирует монеты. В его коллекции 27 монет, причём все они имеют различный диаметр, различную массу и были выпущены в разные годы. Каждая монета хранится в отдельном спичечном коробке. Может ли Артём сложить из этих коробков параллелепипед 3×3×3 так, чтобы любая монета была легче монеты, находящейся под ней, меньше монеты справа от нее и древнее той, которая находится перед ней?

Прислать комментарий     Решение

Задача 64436

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9,10,11

Имеется 36 борцов. У каждого некоторый уровень силы, и более сильный всегда побеждает более слабого, а равные по силе сводят поединок вничью. Всегда ли этих борцов можно разбить на пары так, что все победители в парах будут не слабее, чем все те, кто сделал ничью или проиграл, а все сделавшие ничью будут не слабее всех тех, кто проиграл?

Прислать комментарий     Решение

Задача 64596

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Принцип крайнего (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю.

Прислать комментарий     Решение

Задача 88275

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Процессы и операции ]
Сложность: 3+
Классы: 6,7,8

Двадцать рыцарей надели двадцать плащей, и каждому плащ оказался короток. Тогда рыцари, сняв плащи, выстроились по росту. Самый высокий рыцарь взял себе самый длинный плащ, второй взял себе самый длинный плащ из оставшихся и т.д. Рыцарь самого маленького роста взял себе самый короткий плащ. Докажите, что и в этом случае каждому рыцарю плащ окажется короток.
Прислать комментарий     Решение


Задача 97825

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

На уроке танцев 15 мальчиков и 15 девочек построили двумя параллельными колоннами, так что образовалось 15 пар. В каждой паре измерили разницу роста мальчика и девочки (разница берётся по абсолютной величине, то есть из большего вычитают меньшее). Максимальная разность оказалась 10 см. В другой раз перед образованием пар каждую колонну предварительно построили по росту. Докажите, что максимальная разность будет не больше 10 см.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 97]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .