ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 9316]      



Задача 87952

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Разрезания (прочее) ]
Сложность: 2-
Классы: 5,6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 88005

Темы:   [ Перегруппировка площадей ]
[ Разрезания (прочее) ]
Сложность: 2-
Классы: 5,6,7

На мачте пиратского корабля развевается двухцветный прямоугольный флаг, состоящий из чередующихся чёрных и белых вертикальных полос одинаковой ширины. Общее число полос равно числу пленных, находящихся в данный момент на корабле. Сначала на корабле было 12 пленных, а на флаге  — 12 полос; затем два пленных сбежали. Как разрезать флаг на две части, а затем сшить их, чтобы площадь флага и ширина полос не изменились, а число полос стало равным 10?
Прислать комментарий     Решение


Задача 88207

Темы:   [ Перегруппировка площадей ]
[ Разные задачи на разрезания ]
Сложность: 2-
Классы: 6,7,8

Разрежьте квадрат на пять треугольников так, чтобы площадь одного из этих треугольников равнялась сумме площадей оставшихся.
Прислать комментарий     Решение


Задача 54775

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2-
Классы: 6,7

Один из четырёх углов, образующихся при пересечении двух прямых, равен 41°. Чему равны три остальных угла?

Прислать комментарий     Решение

Задача 88139

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 5,6,7,8

Попробуйте составить квадрат из набора палочек: 6 шт. по 1 см, 3 шт. по 2 см, 6 шт. по 3 см и 5 шт. по 4 см. Ломать палочки и накладывать одну на другую нельзя.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 9316]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .