ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 133]      



Задача 110131

Темы:   [ Взвешивания ]
[ Правило произведения ]
[ Теория алгоритмов (прочее) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 8,9,10,11

В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)

Прислать комментарий     Решение

Задача 111790

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 8,9,10

Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?
Прислать комментарий     Решение


Задача 35224

Тема:   [ Взвешивания ]
Сложность: 4+
Классы: 8,9,10

Имеется четыре монеты, три из которых - настоящие, весящие одинаково, а одна - фальшивая, отличающаяся от них по весу. Имеются также чашечные весы без гирь. Весы таковы, что если положить на их чашки одинаковые по массе грузы, то любая из чашек может перевесить, а если грузы различны по массе, то всегда перевесит чашка с более тяжелым грузом. Как за три взвешивания на таких весах наверняка выявить фальшивую монету и определить, легче или тяжелее она настоящих?
Прислать комментарий     Решение


Задача 79288

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Процессы и операции ]
Сложность: 4+
Классы: 8,9,10

Имеется несколько гирь, масса каждой из которых равна целому числу. Известно, что их можно разбить на k равных по массе групп.
Доказать, что не менее чем k способами можно убрать одну гирю так, чтобы оставшиеся гири нельзя было разбить на k равных по массе групп.

Прислать комментарий     Решение

Задача 98259

Темы:   [ Взвешивания ]
[ Троичная система счисления ]
Сложность: 4+
Классы: 7,8,9,10

Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.
Докажите, что для этой цели ему
  а) достаточно четырёх взвешиваний и
  б) недостаточно трёх.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .