ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 3915]      



Задача 32041

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 5,6,7,8

В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?

Прислать комментарий     Решение


Задача 35707

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
   а) по 2 монеты;
   б) по 3 монеты;
   в) по 4 монеты;
   г) по 5 монет;
   д) по 6 монет;
   е) по 7 монет?
(Разрешается класть монеты одну на другую.)

Прислать комментарий     Решение

Задача 79639

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2
Классы: 6,7

В ковре размером 4 х 4 метра моль проела 15 дырок. Всегда ли можно вырезать коврик размером 1х1, не содержащий внутри дырок? (Дырки считаются точечными).
Прислать комментарий     Решение


Задача 87940

Темы:   [ Подсчет двумя способами ]
[ Задачи на работу ]
Сложность: 2
Классы: 5,6,7

Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?

Прислать комментарий     Решение

Задача 88072

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2
Классы: 6,7,8

а) Покажите, что среди любых шести целых чисел найдутся два, разность которых кратна 5.
б) Останется ли это утверждение верным, если вместо разности взять сумму?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 3915]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .