ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 3915]      



Задача 88092

Темы:   [ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 2
Классы: 6,7,8

Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя?

Прислать комментарий     Решение

Задача 88102

Темы:   [ Подсчет двумя способами ]
[ Линейные неравенства и системы неравенств ]
Сложность: 2
Классы: 5,6,7

Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

Прислать комментарий     Решение

Задача 88211

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7,8

На доске написаны шесть чисел: 1, 2, 3, 4, 5, 6. За один ход разрешается к любым двум из них одновременно добавлять по единице. Можно ли за несколько ходов все числа сделать равными?
Прислать комментарий     Решение


Задача 88214

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7,8

В классе учатся 38 человек. Докажите, что среди них найдутся четверо, родившихся в один месяц.
Прислать комментарий     Решение


Задача 88262

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Можно ли выложить в ряд все 28 косточек домино согласно правилам игры так, чтобы на одном конце ряда оказалось 5, а на другом 6 очков?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 3915]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .