ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 3973]      



Задача 103960

 [Сбор орехов]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7,8

Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.
Прислать комментарий     Решение


Задача 111317

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 2
Классы: 5,6,7

Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?
Прислать комментарий     Решение


Задача 116011

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 7,8,9,10

Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

Прислать комментарий     Решение

Задача 116964

Тема:   [ Перебор случаев ]
Сложность: 2
Классы: 6,7,8

Автор: Шноль Д.Э.

Дима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?
(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.)

Прислать комментарий     Решение

Задача 111244

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Про числа a и b известно, что a=b+1 . Может ли оказаться так, что a4=b4 ?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 3973]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .