ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 79305

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 9

Имеются две страны: Обычная и Зазеркалье. У каждого города в Обычной стране есть "двойник" в Зазеркалье, и наоборот. Однако если в Обычной стране какие-то два города соединены железной дорогой, то в Зазеркалье эти города не соединены, а каждые два несоединённых в Обычной стране города обязательно соединены железной дорогой в Зазеркалье. В Обычной стране девочка Алиса не может проехать из города A в город B, сделав менее двух пересадок. Доказать, что Алиса в Зазеркалье сможет проехать из любого города в любой другой, сделав не более двух пересадок.

Прислать комментарий     Решение

Задача 97787

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Несколько фишек двух цветов расположены в ряд (встречаются оба цвета). Известно, что фишки, между которыми 10 или 15 фишек, одинаковы.
Какое наибольшее число фишек может быть?

Прислать комментарий     Решение

Задача 97990

Темы:   [ Связность и разложение на связные компоненты ]
[ Раскраски ]
Сложность: 3+
Классы: 8,9,10

Тетрадный лист раскрасили в 23 цвета по клеткам. Пара цветов называется хорошей, если существует две соседние клетки, закрашенные этими цветами. Каково минимальное число хороших пар?

Прислать комментарий     Решение

Задача 30783

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4.
Докажите, что нельзя удалить ребро так, чтобы граф распался на две изоморфные компоненты связности.

Прислать комментарий     Решение

Задача 79528

Темы:   [ Связность и разложение на связные компоненты ]
[ Раскраски ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9

20 телефонов соединены проводами так, что каждый провод соединяет два телефона, каждая пара телефонов соединена не более чем одним проводом и от каждого телефона отходит не более двух проводов. Нужно закрасить провода (каждый провод целиком одной краской) так, чтобы от каждого телефона отходили провода разных цветов. Какого наименьшего числа красок достаточно для такой закраски?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .