ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



Задача 66157

Тема:   [ Симметричная стратегия ]
Сложность: 4
Классы: 8,9,10

Изначально на столе лежат три кучки из 100, 101 и 102 камней соответственно. Илья и Костя играют в следующую игру. За один ход каждый из них может взять себе один камень из любой кучи, кроме той, из которой он брал камень на своем предыдущем ходе (при своём первом ходе каждый игрок может брать камень из любой кучки). Ходы игроки делают по очереди, начинает Илья. Проигрывает тот, кто не может сделать ход. Кто из игроков может выиграть, как бы ни играл соперник?

Прислать комментарий     Решение

Задача 105123

Темы:   [ Симметричная стратегия ]
[ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
Сложность: 4
Классы: 7,8,9

Двое игроков по очереди выставляют на доску 65×65 по одной шашке. При этом ни в одной линии (горизонтали или вертикали) не должно быть больше двух шашек. Кто не может сделать ход – проиграл. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Задача 74569

Темы:   [ Симметричная стратегия ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 7,8,9,10

Автор: Фомин С.В.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений), а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?
Прислать комментарий     Решение


Задача 64454

Тема:   [ Симметричная стратегия ]
Сложность: 5-
Классы: 8,9,10

Петя и Вася играют в такую игру. Сначала на столе лежит 11 кучек по 10 камней. Игроки ходят по очереди, начинает Петя. Каждым ходом игрок берёт 1, 2 или 3 камня, но Петя каждый раз выбирает все камни из любой одной кучи, а Вася всегда выбирает все камни из разных кучек (если их больше одного). Проигрывает тот, кто не может сделать ход. Кто из игроков может обеспечить себе победу, как бы ни играл его соперник?

Прислать комментарий     Решение

Задача 32047

Темы:   [ Признаки делимости на 3 и 9 ]
[ Симметричная стратегия ]
Сложность: 2+
Классы: 6,7,8,9

Петя и Вася выписывают 12-значное число, ставя цифры по очереди, начиная со старшего разряда. Начинает Петя.

Докажите, что какие бы цифры он не писал, Вася всегда сможет добиться, чтобы получившееся число делилось на 9.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .