ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



Задача 32022

Темы:   [ Обход графов ]
[ Обходы многогранников ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

В одной из вершин  а) октаэдра;  б) куба сидит муха. Может ли она проползти по всем его рёбрам ровно по одному разу и возвратиться в исходную вершину?

Прислать комментарий     Решение

Задача 35363

Темы:   [ Обход графов ]
[ Обходы многогранников ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз?

Прислать комментарий     Решение

Задача 35514

Темы:   [ Обход графов ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 8,9

В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Можно ли за несколько ходов поставить коней так, чтобы во всех соседних углах стояли кони различного цвета?

Прислать комментарий     Решение

Задача 97840

Темы:   [ Обход графов ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

Прислать комментарий     Решение

Задача 30809

Темы:   [ Обход графов ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9

Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно  n –1  раз и не проводя никакое ребро дважды.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .