ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 378]      



Задача 35105

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 10,11

Существуют ли такие иррациональные числа a и b, что степень ab - число рациональное?
Прислать комментарий     Решение


Задача 60864

Темы:   [ Рациональные и иррациональные числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 9,10,11

При каких натуральных a и b число logab будет рациональным?

Прислать комментарий     Решение

Задача 61019

Темы:   [ Производная и кратные корни ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 10,11

Для данного многочлена P(x) опишем способ, который позволяет построить многочлен R(x), который имеет те же корни, что и P(x), но все кратности 1. Положим  Q(x) = (P(x), P'(x))  и  R(x) = P(x)Q–1(x).  Докажите, что
  а) все корни многочлена P(x) будут корнями R(x);
  б) многочлен R(x) не имеет кратных корней.

Прислать комментарий     Решение

Задача 61020

Темы:   [ Производная и кратные корни ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 10,11

Постройте многочлен R(x) из задачи 61019, если:
  а)  P(x) = x6 – 6x4 – 4x3 + 9x2 + 12x + 4;
  б)  P(x) = x5 + x4 – 2x3 – 2x2 + x + 1.

Прислать комментарий     Решение

Задача 61025

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что при  n > 0  многочлен  nxn+1 – (n + 1)n  + 1  делится на  (x – 1)2.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .