ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 237]      



Задача 64324

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8

Даны два треугольника. Сумма двух углов первого треугольника равна некоторому углу второго. Сумма другой пары углов первого треугольника также равна некоторому углу второго. Верно ли, что первый треугольник – равнобедренный?

Прислать комментарий     Решение

Задача 64455

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8,9

В треугольнике ABC  AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что  AE = ED.  Найдите угол DAC.

Прислать комментарий     Решение

Задача 64903

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

Автор: Рожкова М.

В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что  ∠A = 2∠B  тогда и только тогда, когда  AC = 2MD.

Прислать комментарий     Решение

Задача 103878

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 7,8

У Васи есть пластмассовый угольник (без делений) с углами 30°, 60° и 90. Ему нужно построить угол в 15°. Как это сделать, не используя других инструментов?

Прислать комментарий     Решение

Задача 108036

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На стороне BC равнобедренного треугольника ABC  (AB = BC)  взяли такие точки N и M (N ближе к B, чем M), что  NM = AM  и  ∠MAC = ∠BAN.
Найдите  ∠CAN .

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 237]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .