ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1634]      



Задача 116514

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Касающиеся сферы ]
[ Неопределено ]
Сложность: 2+
Классы: 10,11

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер.

Прислать комментарий     Решение

Задача 35645

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 2+
Классы: 8,9

Стороны синего и зеленого правильных треугольников соответственно параллельны. Периметр синего треугольника равен 4, а периметр зеленого треугольника равен 5. Найдите периметр шестиугольника, полученного в пересечении этих треугольников.
Прислать комментарий     Решение


Задача 52532

Темы:   [ Прямоугольный треугольник с углом в 30° ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Хорда пересекает диаметр под углом в 30o и делит его на два отрезка, равные 2 и 6. Найдите расстояние от центра окружности до этой хорды.

Прислать комментарий     Решение


Задача 116515

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Площадь треугольника (прочее) ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 2+
Классы: 10,11

В пространстве заданы три луча: DA, DB и DC, имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°. Сфера пересекает луч DA в точках A1 и A2, луч DB – в точках B1 и B2, луч DC – в точках C1 и C2. Найдите площадь треугольника A2B2C2, если площади треугольников DA1B1, DA1C1, DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

Прислать комментарий     Решение

Задача 54191

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты.

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1634]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .