ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 318]      



Задача 55051

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD отрезки AB и CD являются основаниями. Диагонали трапеции пересекаются в точке E. Найдите площадь треугольника BCE, если AB = 30, DC = 24, AD = 3 и $ \angle$DAB = 60o.

Прислать комментарий     Решение


Задача 55320

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

В прямоугольной трапеции ABCD основание AB в 1,5 раза больше диагонали AC. Углы BAD и ADC прямые. Угол DCA равен углу BCA. Боковая сторона AD равна 4. Найдите площадь трапеции ABCD.

Прислать комментарий     Решение


Задача 108499

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательная окружность ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC прямые, содержащие высоты AP, CR, и BQ (точки P, R и Q лежат на прямых, содержащих соответствующие стороны треугольника ABC), пересекаются в точке O. Найдите площади треугольников ABC и POC, если известно, что RP параллельно AC, AC = 4 и sin$ \angle$ABC = $ {\frac{24}{25}}$.

Прислать комментарий     Решение


Задача 108500

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательная окружность ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD диагонали AC и BD пересекаются в точке O и перпендикулярны боковым сторонам. Продолжения боковых сторон пересекаются в точке E. Найдите площади треугольников EAD и COD, если известно, что основание AD = 6 и sin$ \angle$CDA = $ {\frac{4}{5}}$.

Прислать комментарий     Решение


Задача 54828

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

В трапеции MNPQ даны основания MQ = 4, NP = 2 и углы M и Q при основании, равные соответственно arctg5 и arctg$ {\frac{1}{2}}$. Найдите радиус окружности, касающейся диагоналей трапеции MP и NQ и основания MQ.

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 318]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .