ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 708]      



Задача 56831

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8

Пусть Oa, Ob и Oc — центры вневписанных окружностей треугольника ABC. Докажите, что точки A, B и C — основания высот треугольника OaObOc.
Прислать комментарий     Решение


Задача 56832

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8

Докажите, что сторона BC треугольника ABC видна из центра O вписанной окружности под углом  90o + $ \angle$A/2, а из центра Oa вневписанной окружности под углом  90o - $ \angle$A/2.
Прислать комментарий     Решение


Задача 56839

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8

Докажите, что точки, симметричные точке пересечения высот треугольника ABC относительно его сторон, лежат на описанной окружности.
Прислать комментарий     Решение


Задача 64735

Темы:   [ Вписанные и описанные окружности ]
[ Взаимное расположение двух окружностей ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 9,10

Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого.
(Здесь треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри нее.)

Прислать комментарий     Решение

Задача 77954

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
Сложность: 3
Классы: 8,9

Для выпуклого четырёхугольника ABCD соблюдено условие: AB + CD = BC + DA. Докажите, что окружность, вписанная в $ \Delta$ABC, касается окружности, вписанной в $ \Delta$ACD.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 708]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .