ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1264]      



Задача 52629

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Диаметр, основные свойства ]
Сложность: 2+
Классы: 8,9

Меньшая сторона прямоугольника равна 1, острый угол между диагоналями равен 60o. Найдите радиус окружности, описанной около прямоугольника.

Прислать комментарий     Решение


Задача 55253

Тема:   [ Теорема косинусов ]
Сложность: 2+
Классы: 8,9

Сторона треугольника равна 21, а две другие стороны образуют угол в 60o и относятся как 3:8. Найдите эти стороны.

Прислать комментарий     Решение


Задача 57593

Тема:   [ Теорема косинусов ]
Сложность: 2+
Классы: 9

Докажите, что  4S = (a2 - (b - c)2)ctg($ \alpha$/2).
Прислать комментарий     Решение


Задача 57594

Тема:   [ Теорема косинусов ]
Сложность: 2+
Классы: 9

Докажите, что  cos2($ \alpha$/2) = p(p - a)/bc и  sin2($ \alpha$/2) = (p - b)(p - c)/bc.
Прислать комментарий     Решение


Задача 57599

Тема:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 2+
Классы: 9

Докажите, что:
а)  a = r(ctg($ \beta$/2) + ctg($ \gamma$/2)) = r cos($ \alpha$/2)/(sin($ \beta$/2)sin($ \gamma$/2));
б)  a = ra(tg($ \beta$/2) + tg($ \gamma$/2)) = racos($ \alpha$/2)/(cos($ \beta$/2)cos($ \gamma$/2));
в)  p - b = rctg($ \beta$/2) = ratg($ \gamma$/2);
г)  p = ractg($ \alpha$/2).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1264]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .