ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 173]      



Задача 115872

Темы:   [ Теоремы Чевы и Менелая ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9,10,11

Три прямые проходят через точку O и образуют попарно равные углы. На одной из них взяты точки A1, A2, на другой – B1, B2, так что точка C1 пересечения прямых A1B1 и A2B2 лежит на третьей прямой. Пусть C2 – точка пересечения A1B2 и A2B1. Докажите, что угол C1OC2 прямой.

Прислать комментарий     Решение

Задача 66709

Темы:   [ Теоремы Чевы и Менелая ]
[ Вписанные четырехугольники (прочее) ]
[ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.

Прислать комментарий     Решение

Задача 108249

Темы:   [ Теоремы Чевы и Менелая ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Сонкин М.

Окружность с центром O, вписанная в треугольник ABC, касается стороны AC в точке K. Вторая окружность, также с центром O, пересекает все стороны треугольника ABC. Пусть E и F – её точки пересечения со сторонами соответственно AB и BC, ближайшие к вершине B; B1 и B2 – точки её пересечения со стороной AC, B1 – ближе к A. Докажите, что точки B, K и точка P пересечения отрезков B2E и B1F лежат на одной прямой.

Прислать комментарий     Решение

Задача 56923

Темы:   [ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
Сложность: 5-
Классы: 9,10,11

На сторонах BC, CA, AB треугольника ABC взяты точки  A1, B1, C1. Докажите, что

$\displaystyle {\frac{AC_1}{C_1B}}$ . $\displaystyle {\frac{BA_1}{A_1C}}$ . $\displaystyle {\frac{CB_1}{B_1A}}$ = $\displaystyle {\frac{\sin ACC_1}{\sin C_1CB}}$ . $\displaystyle {\frac{\sin BAA_1}{\sin A_1AC}}$ . $\displaystyle {\frac{\sin CBB_1}{\sin B_1BA}}$.


Прислать комментарий     Решение

Задача 56898

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1 соответственно. Докажите, что точки A1, B1 и C1 лежат на одной прямой тогда и только тогда, когда

$\displaystyle {\frac{\overline{BA_1}}{\overline{CA_1}}}$ . $\displaystyle {\frac{\overline{CB_1}}{\overline{AB_1}}}$ . $\displaystyle {\frac{\overline{AC_1}}{\overline{BC_1}}}$ = 1        (теорема Менелая).


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .